Experimental Testing of a New Iterative Learning Control Algorithm
نویسنده
چکیده
In this paper, a new model inverse optimal iterative learning control algorithm is practically implemented on an industrial gantry robot. The algorithm has only one tuning parameter which can be adjusted to provide a balance between convergence speed and robustness. Results show that the algorithm is capable of learning the required trajectory in very few iterations. However at this convergence rate the lack of robustness is a major issue. Appropriate use of the tuning parameter is shown to greatly increase the algorithm robustness. The addition of a zero-phase low-pass filter also successfully stabilises the algorithm, as demonstrated by experiments performed on the robot.
منابع مشابه
Iterative learning identification and control for dynamic systems described by NARMAX model
A new iterative learning controller is proposed for a general unknown discrete time-varying nonlinear non-affine system represented by NARMAX (Nonlinear Autoregressive Moving Average with eXogenous inputs) model. The proposed controller is composed of an iterative learning neural identifier and an iterative learning controller. Iterative learning control and iterative learning identification ar...
متن کاملBilateral Teleoperation Systems Using Backtracking Search optimization Algorithm Based Iterative Learning Control
This paper deals with the application of Iterative Learning Control (ILC) to further improve the performance of teleoperation systems based on Smith predictor. The goal is to achieve robust stability and optimal transparency for these systems. The proposed control structure make the slave manipulator follow the master in spite of uncertainties in time delay in communication channel and model pa...
متن کاملOptimizing Cost Function in Imperialist Competitive Algorithm for Path Coverage Problem in Software Testing
Search-based optimization methods have been used for software engineering activities such as software testing. In the field of software testing, search-based test data generation refers to application of meta-heuristic optimization methods to generate test data that cover the code space of a program. Automatic test data generation that can cover all the paths of software is known as a major cha...
متن کاملPerfect Tracking of Supercavitating Non-minimum Phase Vehicles Using a New Robust and Adaptive Parameter-optimal Iterative Learning Control
In this manuscript, a new method is proposed to provide a perfect tracking of the supercavitation system based on a new two-state model. The tracking of the pitch rate and angle of attack for fin and cavitator input is of the aim. The pitch rate of the supercavitation with respect to fin angle is found as a non-minimum phase behavior. This effect reduces the speed of command pitch rate. Control...
متن کاملDevelopment of Reinforcement Learning Algorithm to Study the Capacity Withholding in Electricity Energy Markets
This paper addresses the possibility of capacity withholding by energy producers, who seek to increase the market price and their own profits. The energy market is simulated as an iterative game, where each state game corresponds to an hourly energy auction with uniform pricing mechanism. The producers are modeled as agents that interact with their environment through reinforcement learning (RL...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004